Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis.
نویسندگان
چکیده
PURPOSE The ER chaperone GRP78 translocates to the surface of tumor cells and promotes survival, metastasis, and resistance to therapy. An oncogenic function of cell surface GRP78 has been attributed to the activation of the phosphoinositide 3-kinase (PI3K) pathway. We intend to use a novel anti-GRP78 monoclonal antibody (MAb159) to attenuate PI3K signaling and inhibit tumor growth and metastasis. EXPERIMENTAL DESIGN MAb159 was characterized biochemically. Antitumor activity was tested in cancer cell culture, tumor xenograft models, tumor metastasis models, and spontaneous tumor models. Cancer cells and tumor tissues were analyzed for PI3K activity. MAb159 was humanized and validated for diagnostic and therapeutic application. RESULTS MAb159 specifically recognized surface GRP78, triggered GRP78 endocytosis, and localized to tumors but not to normal organs in vivo. MAb159 inhibited tumor cell proliferation and enhanced tumor cell death both in vitro and in vivo. In MAb159-treated tumors, PI3K signaling was inhibited without compensatory MAPK pathway activation. Furthermore, MAb159 halted or reversed tumor progression in the spontaneous PTEN-loss-driven prostate and leukemia tumor models, and inhibited tumor growth and metastasis in xenograft models. Humanized MAb159, which retains high affinity, tumor specific localization, and the antitumor activity, was nontoxic in mice, and had desirable pharmacokinetics. CONCLUSIONS GRP78-specific antibody MAb159 modulates the PI3K pathway and inhibits tumor growth and metastasis. Humanized MAb159 will enter human trials shortly.
منابع مشابه
Cancer Therapy: Preclinical Monoclonal Antibody against Cell Surface GRP78 as a Novel Agent in Suppressing PI3K/AKT Signaling, Tumor Growth, and Metastasis
Purpose: The ER chaperone GRP78 translocates to the surface of tumor cells and promotes survival, metastasis, and resistance to therapy. An oncogenic function of cell surface GRP78 has been attributed to the activation of the phosphoinositide 3-kinase (PI3K) pathway. We intend to use a novel antiGRP78 monoclonal antibody (MAb159) to attenuate PI3K signaling and inhibit tumor growth and
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملCancer Cells Resistant to Therapy Promote Cell Surface Relocalization of GRP78 Which Complexes with PI3K and Enhances PI(3,4,5)P3 Production
Traditionally, GRP78 has been regarded as an endoplasmic reticulum (ER) lumenal protein due to its carboxyl KDEL retention motif. Recently, a subfraction of GRP78 is found to localize to the surface of specific cell types, serving as co-receptors and regulating signaling. However, the physiological relevance of cell surface GRP78 (sGRP78) expression in cancer and its functional interactions at ...
متن کاملAccelerated tumor growth mediated by sublytic levels of antibody-induced complement activation is associated with activation of the PI3K/AKT survival pathway.
PURPOSE We addressed the possibility that low levels of tumor cell-bound antibodies targeting gangliosides might accelerate tumor growth. EXPERIMENTAL DESIGN To test this hypothesis, we treated mice with a range of monoclonal antibody (mAb) doses against GM2, GD2, GD3, and CD20 after challenge with tumors expressing these antigens and tested the activity of the same mAbs in vitro. We also exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 19 24 شماره
صفحات -
تاریخ انتشار 2013